vZLA Training Syllabus: Local Control 1

Date:	Version:	Contact:
2024-02-12	1.1	Training Administrator

1. PURPOSE

The purpose of the Training Syllabus is to provide ZLA training staff an outline of expectations for students, and the minimum criteria for satisfactory performance and certification.

2. DISTRIBUTION

Training Syllabi are for use by the ZLA training staff, and are open source to our students as a reference of expectations. For students, this syllabus is an outline of absolute minimum requirements, and is in no way a ticket to certification. Certification minima are ultimately determined by the mentor / instructor, and any shortcomings of the student, as determined by the training staff-member, are grounds for additional training and/or withholding endorsement.

3. PREREQUISITES

The prerequisites for LC1 training are outlined in the ZLA Training Summary. The student must hold a minimum VATSIM S1 and have completed the GC1 certification.

4. SESSION PREPARATION

- 1. This training should be conducted on San Diego Tower: reference the ZLA Training Summary
- 2. Students should:
 - a. Arrive at session with CRC set up by student preference. Students are required to have the following displays open:
 - i. STARS display (Position: SAN Local)
 - ii. ASDE-X (SAN)
 - b. Students are recommended, but not required to have the following displays active:
 - i. Tower Data Link System (TDLS SAN)
 - ii. Tower Cab Mode (SAN)
 - c. Reviewed the following policies and SOPs:
 - i. San Diego ATCT SOP
 - i. Requirements for Controller Info Template and Voice ATIS SOP

5. KNOWLEDGE REQUIREMENTS

- 1. Demonstrate knowledge and application of the following **separation minima**:
 - a. Same runway separation
 - b. Radar departures and arrivals
 - c. Diverging and non-diverging departures
 - d. Visual Separation
 - i. Tower applied
 - ii. Pilot applied
 - e. Longitudinal separation on final approach between IFR aircraft
 - f. Wake turbulence separation
 - g. Class Bravo separation of VFR aircraft
 - h. Basic traffic advisory procedures

- 2. Airspace / Geography Familiarization
 - a. Identify lateral and vertical boundaries of position airspace
 - b. Issuing frequency changes to aircraft in a timely manner
 - c. Identify common VFR reporting points depicted on the San Diego FLY and TAC charts
 - d. Identify and describe the 3 Class Bravo transition routes that traverse San Diego Tower airspace.
 - e. Identify the VFR corridor over the San Diego airport.

3. Departures

- a. Issue departure clearances in an safe, orderly, and expeditious manner.
- b. Utilize Line Up and Wait (LUAW) to manage departure flow.
- c. Ensure separation is maintained between departures.

4. Arrivals

- a. Issue landing clearances to aircraft.
- b. Ensure separation is maintained between arrivals.
- 5. Traffic Management Unit (TMU) Topics
 - a. Basic controlled IFR departures "call for release" programs
 - b. Monitoring ARTCC traffic levels and proactively implementing local traffic management initiatives
 - i. This should include ground delays, increased MITs and other techniques to mitigate TRACON and Center saturation as needed.

6. Facility Coordination

- a. Demonstrate proficiency in the coordination of aircraft or operations between both intrafacility and interfacility CPCs.
- b. Issue "rolling boundary" calls to the overlying radar sector

7. Automation

- a. Demonstrate proficiency in issuing Pre-Departure Clearances (PDCs) to aircraft via TDLS.
- b. Demonstrate knowledge of STARS automation including, but not limited to, the following functions:
 - i. Creating VFR flight plans
 - ii. Starting a track
 - iii. Accepting a hand off
 - iv. Initiating a hand off
 - v. Accepting a point-out
 - vi. Initiating a point-out
 - vii. Dropping a track
- c. Demonstrate proficiency of ASDE-X features including, but not limited to, the following functions:
 - i. Starting a track
 - ii. Dropping a track
 - iii. Identifying Mode C enabled and disabled aircraft
 - iv. Identifying errant transponder codes
 - v. Use of safety logic