ZLA Logo
Who's Online
Online Controllers Flights to/from ZLA

Departures (23)

Callsign Dep Arr Status ETA
UAE461 KLAX OMDB Enroute 0520
UAL2039 KLAX KORD Enroute 2345
UAL2096 KLAX KEWR Enroute 2334
UAL198 KLAX ZSPD Enroute 0823
PAY7260 KLAX KSEA Enroute 1134
UAL4345 KLAX RKSI Enroute 0543
DAL1045 KLAX KSEA Enroute 1246
WSN4 KHHR KOAK Enroute 1510
ASA1373 KLAX KPDX Enroute 1117
PAL3613 KLAX RJTT Enroute 0135
ASA2124 KLAX KLAS Enroute 0119
DAL2645 KLAX KSEA Enroute 1201
CAL5 KLAX RCTP Enroute 1148
UAE216 KLAX OMDB Enroute 0004
DLH3A KLAX EDDM Enroute 2141
PAY1385 KLAX KBFI Enroute 1050
AAL2002 KLAX KLAS Enroute 1600
FDX5150 KLAX KDEN Enroute 1600
DAL418 KLAX KLAS Enroute 1600
JBU188 KLAX KBOS Enroute 2326
LNR191 KLAX LFMN Enroute 1600
SWA7759 KLAX KPDX Enroute 1600
WAT2632 KLAX KPDX Enroute 1600

Arrivals (24)

Callsign Dep Arr Status ETA
QFA95 YMML KLAX Enroute 0620
AAL72 YSSY KLAX Enroute 0641
SIA36 WSSS KLAX Enroute 1200
GTI32 RJGG KLAX Enroute 0746
UAL291 KMIA KLAX Enroute 0729
VIR7 EGLL KLAX Enroute 1630
AAL529 KORD KLAX Enroute 0845
BAW7D EGLL KLAX Enroute 0839
AFR040 LFMN KLAX Enroute 1529
FBW78A EGLL KLAX Enroute 1448
UAL411 KDEN KLAX Enroute 1600
AC785 CYOW KLAX Enroute 0952
AFL106 UUEE KLAX Enroute 2006
UAL3755 KPHX KLAX Enroute 1031
UAL2095 KIAH KLAX Enroute 0856
AAL67 KMCO KLAX Enroute 1526
AFR040L LFMN KLAX Enroute 1944
QFA15 YBBN KLAX Departing
QFA11 YSSY KLAX Enroute 0714
AAL2200 KDEN KLAX Enroute 1417
TAP075 EDDF KLAX Enroute 1636
AAL9000 KVCV KLAX Enroute 0901
UAL719 KSFO KLAX Enroute 1600
QFA93 YMML KLAX Enroute 0828

Los Angeles (SoCal) 47

Departures (2)

Callsign Dep Arr Status ETA
UPS142 KONT KBLH Enroute 1657
SWA2139 KONT KSMF Enroute 0231

Empire (SoCal) 2

Departures (8)

Callsign Dep Arr Status ETA
DAL2520 KSAN KPHL Enroute 0203
SWA1974 KSAN KSLC Enroute 1600
SWA4235 KSAN KSFO Enroute 1429
ACA526 KSAN CYUL Enroute 0258
PRM4211 KSAN KPDX Enroute 0959
AAL9059 KSAN KPSP Enroute 0126
NKS429 KSAN KLAS Enroute 1316
ASA1135 KSAN KSEA Enroute 1600

Arrivals (7)

Callsign Dep Arr Status ETA
SWA3627 KMDW KSAN Departing
DAL117 KPDX KSAN Enroute 0729
FDX311 KSEA KSAN Enroute 0836
N316PR KIFP KSAN Enroute 1919
AAL2056 KCLT KSAN Departing
DAL1252 KSLC KSAN Enroute 1600
SWA2283 KMDW KSAN Enroute 1002

San Diego (SoCal) 15

Departures (2)

Callsign Dep Arr Status ETA
UAL0677 KSNA KIAH Enroute 0140
SWA1458 KLGB KLAS Enroute 0826

Arrivals (1)

Callsign Dep Arr Status ETA
FDX1366 KPDX KSNA Enroute 0748

Coast (SoCal) 3

Departures (2)

Callsign Dep Arr Status ETA
N459BE KBUR KDEN Enroute 1753
N737GG KBUR KSFO Enroute 1600

Burbank (SoCal) 2

Arrivals (3)

Callsign Dep Arr Status ETA
FLE1870 CYVR KPSP Enroute 0817
AAL9059 KSAN KPSP Enroute 0126
SWA2929 KDEN KPSP Enroute 1059

Palm Springs (SoCal) 3

Departures (11)

Callsign Dep Arr Status ETA
SWA1547 KLAS KMCO Enroute 2330
SWA2921 KLAS KMDW Arriving
SWA2171 KLAS KMDW Arriving
SWA442 KLAS KBOI Enroute 1600
SWA441 KLAS KBOI Enroute 1043
SWA416 KLAS KPDX Enroute 1053
AAY460 KLAS KMSO Enroute 1600
UPS1252 KLAS KPDX Enroute 1042
UAL571 KLAS KSFO Enroute 0927
NKS2370 KLAS KBOI Enroute 1613
UAL1914 KLAS KSEA Enroute 1600

Arrivals (20)

Callsign Dep Arr Status ETA
DAL168 EHAM KLAS Enroute 1038
UAL1971 KIAH KLAS Enroute 0834
BAW4D EGLL KLAS Enroute 1025
AAL3321 KMIA KLAS Enroute 0949
BAW47C LGIR KLAS Enroute 1012
ASA2124 KLAX KLAS Enroute 0119
AAY4137 KEUG KLAS Enroute 0943
AAL2002 KLAX KLAS Enroute 1600
NKS429 KSAN KLAS Enroute 1316
NKS644 KSEA KLAS Enroute 1600
UPS1776 KPDX KLAS Enroute 1600
DAL418 KLAX KLAS Enroute 1600
NKS1782 KSJC KLAS Enroute 1144
FFT357 KSEA KLAS Enroute 1600
CXK69 KSEA KLAS Enroute 1600
DLH2013 KSEA KLAS Enroute 1600
FDX505 KSEA KLAS Enroute 1600
FFT4830 KSEA KLAS Enroute 1600
DAL2348 KPHX KLAS Enroute 1600
SWA1458 KLGB KLAS Enroute 0826

Las Vegas 31

Departures (1)

Callsign Dep Arr Status ETA
AAL9000 KVCV KLAX Enroute 0901

Edwards 1

Departures (2)

Callsign Dep Arr Status ETA
COOK72 KIGM KUIN Enroute 2351
N316PR KIFP KSAN Enroute 1919

Arrivals (1)

Callsign Dep Arr Status ETA
UPS142 KONT KBLH Enroute 1657

Other 3
  • Flights To/From ZLA: 107
  • Flights in ZLA Airspace: 36
  • Controller Schedule

    May 30th, 2025

    MM SCT_APP 1500 - 1600
    KA LAX_GND 1600 - 2000
    WB LAX_TWR 1600 - 1800
    NC SCT_APP 1600 - 2000
    JA LAS_TWR 1700 - 1800
    PA SAN_GND 1700 - 1800
    YA LAX_TWR 1800 - 1930
    DG SAN_TWR 1830 - 2030
    JK LAX_TWR 1930 - 2200

    Ok, I've read the METAR, now what does all that mean?

    At some point, whether you are controlling or flying, in the real world or the Flight Simulator world, you have read a METAR. But what do all those letters and numbers mean? This article is dedicated to all the pilots and controllers who have been scratching their heads wondering how to decode this mess.

    Well first off what is a METAR? A METAR is an Aviation Routine Weather Report, issued for an airport every hour. A METAR consists of several parts first of which is the station identifier, followed by the current date in time (UTC); the wind; visibility; weather elements; sky condition; temperature & dew point; atmospheric pressure and lastly the remarks.

    For this article we will use the following METAR as an example:

    KLAX 291950Z 22011G22KT 1/2SM R24R/2600FT RA BR SCT001 OVC005 10/09 A2992 REFG WS RWY24R RMK SF4NS8 SLP113

    Confused yet? Hopefully after reading this article you will have a much better understanding.

    To decode this METAR I will break it down into its individual parts, and explain each in detail:

    KLAX

    This is the easy part, the station identifier. In this example we will use Los Angeles.

    291950Z

    This is the date and the time the METAR was issued. In this case it was issued on the 29th day of the month at 19:50 zulu (UTC).

    22011G22KT

    This is the wind direction and speed. Here the wind is blowing from the southwest, 220 degrees at 11 gusting to 22 knots. Wind speeds of less than 3 knots are considered calm winds. Sometimes you will see VRB in front of the wind speed instead a direction. This indicates that the wind direction is variable. For example VRB05KT indicates that the wind direction is variable at 5 knots.


    1/2SM R24L/2600FT

    This is the visibility. In this example the 1/2SM indicates that the visibility is one half of a statute mile. The R24R/2600FT is the Runway visual Range or RVR for a particular runway, this is measured in feet. In this case the RVR for runway 24R is 2600 feet. RVR is measured with an instrument called a transmissometer. What is a transmissometer you ask? A transmissometer is a projector and a receiver on opposite sides of the runway. A known intensity of light is sent from the projector to the receiver. Any obscuring matter such as rain, snow, dust, fog, haze or smoke reduces the light intensity arriving at the receiver. The resultant intensity is then converted to an RVR value by a signal data converter. These values are displayed by readout equipment in the air traffic facility and is updated once every minute for controllers to issue to pilots. The RVR indication issued in the METAR is the average RVR over the last hour before the METAR was issued. As mentioned before the RVR is measured in feet, since there are 5280 feet in a mile, we know that an RVR reading of 2600 is approximetely half a mile. An RVR reading is only issued when the visibility is less than 1 mile.

    RA BR

    This is the weather elements section. In this example RA BR means rain and mist. I will list below all of the codes for the weather elements. The weather elements can be divided into three categories. Precipitation; obscuration; other. Also preceding any of these categories can be a descriptor. The intensity can also be indicated. A + preceding the precipitation means heavy, no sigh indicates moderate and a indicates light. For example RA indicates light rain. In the example above the precipitation is rain and the obscuration is mist, there are no other weather elements. Meaning there is rain falling and the sky is obscured in mist. Listed below are all the different weather elements:

    Descriptor:

    MI SHALLOW BC PATCHES SH - SHOWER

    DR DRIFTING BL BLOWING TS THUNDERSTORM

    PR PARTIAL FR FREEZING

    Precipitation forms:

    DZ DRIZZLE RA RAIN SN SNOW

    SG SNOW GRAINS PE ICE PELLETS GR - HAIL

    GS SNOW PELLETS IC ICE CRYSTALS UP UNKNOWN

    Obscuration forms:

    BR MIST FG FOG HZ HAZE

    SA SAND FU SMOKE DU DUST

    VA VOLCANIC ASH

    Other phenomena:

    PO DUST/SAND WHIRLS SS SAND STORM

    DS DUST STORM SQ SQUALLS

    +FC TORNADO/WATER SPOUT FC FUNNEL CLOUD

    SCT001 OVC005

    This is the sky condition; it is measured in hundreds of feet and is always in a three digit form. In the example there is a scattered cloud layer at 100 feet and an overcast layer at 500 feet. 050 would mean 5000 feat and 500 would mean 50000 feet, you get the point! Cloud layers in a METAR are shown as height above ground level or AGL. For the cloud layer to be considered a ceiling it must be either a broken or overcast layer. Sky condition is measured in 1/8s or oktas. Listed below are the codes for the various sky conditions:

    SKC Sky clear or no cloud present.

    FEW Sky is less than 2/8s covered with cloud.

    SCT Sky is 3/8s 4/8 covered with cloud.

    BKN Sky is 5/8s 7/8s covered with cloud.

    OVC Sky is 8/8s, or completely covered with cloud.

    10/09

    This is the temperature and dew point and it is measured in degrees Celsius. The temperature always comes before the dew point. In this case the temperature is 10 degrees and the dew point is 9. If the temperature or dew point were below 0 degrees than it would be preceded by an M, so a temperature of minus 10 would read as M10. We all know what temperature is but what is dew point and why is it important? Well the dew point is the point to which the air has to be cooled to for 100% saturation to occur, meaning if the temperature and the dew point are the same then we have 100% relative humidity (we all know what 100% humidity feels like). This means that the air can hold no more water vapor and condensation occurs. This condensation can come in the form of fog, mist, haze etc. So when the temperature and dew point are only 1 degree apart, you can expect one of these to occur. Especially in the evening as the temperature cools and gets closer to the dew point.

    A2992

    This is the atmospheric pressure, better known to us as the altimeter setting. It is measured in inches of mercury or INHG. In this case the altimeter is 29.92 INHG This is important to us because it ensures that we get a correct reading on the aircraft altimeter, which is essentially a barometer in the aircraft that uses the difference in pressure on the ground to that at altitude to calculate the actual height above Sea Level or ASL.


    REFG

    The RE means recent, so REFG would mean recent fog, and basically it is as it sounds, there was fog in the area recently, REFZRA, would mean recent freezing rain, etc.

    WS RWY24R

    WS indicates Low level windshear (within 1600 feet AGL) on the takeoff and approach path. The runway identifier follows the WS warning. The example tells us that windshear was encountered on either the approach or departure for runway 24R. If windshear was encountered on all runways the METAR would read WS ALL RWY.

    RMK SF4NS8 SLP113

    This is the remarks section. It is used to show any other information that may be needed. It shows various things such as cloud types, sea level pressure, or anything else the weather reporter feels is important. In the example here the SF4NS8, is showing us the cloud types. So the SF4 means the first cloud layer (SCT001) is the stratus fractus type cloud. The NS8 means the second could layer (OVC005) in the nimbostratus type cloud. I will list all the cloud types below with a brief description. The SLP113 is the Sea Level Pressure measured in hectopascals or hpa. They are automatically preceded by 10, and the last number is a decimal place. So in this case the sea level pressure is 1011.3 hpa. 95% of the remarks in a METAR are irrelevant to VATSIM, but I will give a brief description of them. TORNADO, FUNNEL CLOUD or WATERSPOUT may be in the remarks section and are pretty self explanatory, they may also be followed by the direction they are moving, N E S or W. A01, means an automated weather station with out a precipitation discriminator, and A02 is an automated weather station with a precipitation discriminator. TWR VIS 2, is the visibility reported by tower personnel. LTG NE, shows lightning, in this case there is lightning to the Northeast. CIG 013V019, this tells us that the ceiling is variable between 1300 and 1900 feet. P0004 indicates the amount of precipitation in hundredths of an inch since the last weather observation. This shows 4/100 of an inch in the last hour. A trace is shown as P0000. There are a few other sections that can be in the remarks section, but are rarely seen so I wont really get into it here.

    Here are the various cloud types and a brief description:

    CI Cirrus AS - Altostratus

    ST Stratus AC - Altocumulus

    CS - Cirrostratus CF Cumulus Fractus

    SF Stratus Fractus ACC Altocumulus Castellanus

    CC Cirrocumulus TCU Heavy or Towering Cumulus

    SC Stratocumulus NS Nimbostratus

    CU Cumulus CB - Cumulonimbus

    The term fractus usually means a broken layer and the term nimbo usually indicates rain clouds.

    Stratus clouds form in horizontal layers, they look like a blanket in the sky, usually form in overcast layers.

    Cirrus clouds are the very high level thin wispy clouds, made of ice crystals.

    Cirrocumulus clouds are thin, cotton like clouds that form a very high overcast layer, usually a sign of bad weather to come in the near future.

    Cirrostratus clouds are a very high thin sheet of clouds which the sun or moon are visible through, producing a halo effect. They are an indication of a warm front coming, therefore deteriorating weather.

    Altocumulus clouds are a mid-level series of patches of rounded masses of cloud that lie in groups or lines, usually not an indication of any future weather.

    Altocumulus Castellanus clouds are an altocumulus with a turreted appearance, instable. Showers and turbulence can be expected.

    Altostratus clouds are thick grey clouds that cover the whole sky. Indicates the near approach of a warm front, some light rain or snow may fall from these clouds. Aircraft icing will almost always occur in this type of cloud.

    Stratus cloud is a low level cloud resembling fog, but not resting on the ground, drizzle usually falls. When stratus clouds are broken up by wind, they are called stratus fractus.

    Stratocumulus clouds are a series of low level patches or rounded masses, usually in a broken layer, you usually see patches of blue sky through the holes in the cloud. Usually common with a high pressure system in the winter. Gives little or no precipitation.

    Nimbostratus clouds are a uniform layer of dark grey cloud, these clouds are usually 15000 feet thick and bring full days of rain or snow.

    Cumulus clouds form in rising air currents and are evidence of unstable air. These are the white puffy clouds. Expect light turbulence. These clouds are also the early stage of a thunderstorm.

    Towering Cumulus clouds build up into high towering masses, hence the name. Rough air will occur under these clouds, as well as icing in them.

    Cumulonimbus clouds are huge cumulus clouds that rise well above the freezing level, the top usually forms an anvil shape as it flattens along the tropopause. These are thunderstorm clouds, and should be avoided due to severe turbulence, severe icing and lightning. Hail is usually present in the cloud. Extra caution should be used because these clouds are commonly embedded in a stratus layer, and cannot be seen.


    That concludes my article on METARs. I hope it was helpful, and cleared up any confusion you may have had. In my next article, I will go into detail on Terminal Area Forecasts (TAF).